Implementing an expression parser into the silting up model

* A new method parameter was introduced after time-step parameter in silting-up model.
» Two new methods were implemented for silting up:

method 2:
allows to specify the parameters used in the silting up equations. They are recommended to be
set as follows to result in algorithms as before with method 1:

65.0 # paraneter Ain|_0 = A (initial infiltration capacity
12.2 # paraneter B in |_end = B*(dg"C) *(fd" D)

0.52 # paraneter Cin |I_end = B*(dg"C) *(fd" D)

-0.64 # paraneter Din |_end = B*(dg"C) *(fd" D)

0.013 # paraneter Ein Cv = E*(fd"F)*(dg"GQ *(t_cul t"H)

-1.03 # paraneter Fin Cv = EX(fd*"F)*(dg"Q *(t_cul t*H)

0.7 # parameter Gin Cv = E*(fd*"F)*(dg"G*(t_cul t*H)

-0.19 # paraneter Hin Cv = E*(fd"F)*(dg"GQ *(t_cul t"H)

The eight parameters must be specified after the last (readgrids) parameters of the
[SiltingUpModel]-section

method 3:
Here it is possible to define custom expressions to calculate a number of equations. The control
file must be extended by a tag called SiltingUpExpressions. Example:

Si | ti ngUpExpressions {
W= ((P>0.05) & P<76.2))*(11. 89+8. 73*| 0g10(Abs(P+0.001))) + (P>=76.2)*28. 33;

X =A # start infiltration rate;

Y = B*KANC*(L*100) "D; # end infiltration rate

Cl = (100*L)"F; # F = SU PARO6 C1L will be stored in a new internal variable
C2 = K\G # G = SU PARO7 C2 will be stored in a new internal variable
C3 = (0O+0.001) "H; # H = SU PARO8 C3 will be stored in a new internal variable
Z = (x=0) + (C0)*(E*C1*C2*C3); # E = SU PAR0O5, O =tinme since last tillage

V = ((XY)*exp(-Z*Q +Y) *R/ 60; # potential infiltration

}

Short description of the expression parser and the expression list syntax for method 3:
o0 Expressions can be defined following algebraic rules.
o Each line contains a single expression which must be closed with a semi colon.

o Each assignment (e.g. A = 15) results in creating or updating a value in the internal
variable list.

o A number of values is already defined by WaSiM (as interface from the calling module),
and WaSiM expects some other values to be defined after all expressions were called.

The expression parser is based on the source code of the expression parser used in SpeQ
Mathematics (http://www.spegmath.com/tutorials/expression_parser_cpp/index.html), written by
Jos de Jong, 2007. It was adopted to the usage in WaSiM by simplifying the error handling
(exceptions are to be handled by WaSiM), extracting the variable list as an external class (to be
handled by WaSiM) and some other minor technical changes.

Operators (ascending precedence per line, no precedence within a line):

&| << >> (AND, OR, BITSHIFTLEFT, BITSHIFTRIGHT)
Z<><><=>= (EQUAL, UNEQUAL, SMALLER, LARGER, SMALLEREQ, LARGEREQ)
+- (PLUS, MINUS)

% || (MULTIPLY, DIVIDE, MODULUS, XOR)

A (POW)

! (FACTORIAL)

Functions (must be used with brackets):

Abs(arg), Exp(arg), Sign(arg), Sqrt(arg), Log(arg), Log10(arg), Sin(arg), Cos(arg), Tan(arg), ASin(arg),
ACos(arg), ATan(arg), Factorial(arg)

Variables:

Pi, Euler (not only e, e is a predefined variable used by WaSiM to deliver a value to the expression parser
interface). You can define your own variables, even with more than one significant character length, e.g.
Info or Help etc. There is no distinction between upper and lower case in function names and variables.

Other:

Scientific notation supported

====> what values WaSiM defines for input (can be used in any expression)
A to J: values as used in soiltable with names SU_PARO01 to SU_PAR10
K: grain size distribution Dg, internally calculated after

double FClay =1log004+log2;

double FSilt = 0.3326 * (log2+log6_3) + 0.3348 *(log6_3+l0g20) + 0.1704 * (log20+l0g36) +
0.1622 * (log36+l0g63) ;

double FSand =0.1336 * (log63+log100) + 0.2005 *(log100-+log200) + 0.3318 * (log200+log630)
+ 0.3341 *(log630+l0g2000);

double FStonesl = (log2000+log6300);
double FStones2 = (log6300+log20000);
double FStones3 = (log20000+log63000);
double FStones4 = (log63000+log200000);

double dg = (FClay*dFractionClay + FSilt*dFractionSilt + FSand*dFractionSand +
FStones1*dFractionStonesl + FStones2*dFractionStones2 +
FStones3*dFractionStones3 + Fstones4*dFractionStones4) / 2.0;

with fractions of each grain size class taken from the soil table
L: fraction of sand

M: fraction of clay

Q v 0o Z

fraction of silt
t_cult, time since last soil cultivation (in days)
rain intensity in mm/h, taken from precipitation input

e_kin: accumulated cinetic energy: for all expressions resulting in W, X, Y or Z: result value of the
last time time step; for V: value of the actual time step

internal time step in minutes

what WaSiM expects for output: (ranging from Z downwards, will be used by WaSiM when going
ahead)

silting up disposition SDISP
end infiltration rate i_inf
start infiltration rate i0
actual cinetic energy

potential infiltration rate inf_pot, depending on energy, siting up disposition, inf_start and
inf_infinite

Order of expressions evaluated by WaSiM:

(o]

(o]

expressions returning W, X, Y and Z are independently of each other.

expression V must be called as last call in any case, since WaSiM will update EKIN internally
using the energy-result (in W) and V depends on all the other results W to Z

other expressions for storing intermediate results may be defined at any position in the expression
list before the results will be used in another expression

In order to use custom parameters for variables A to J, each soil table entry may optionally
contain values for parameters SU_PARO1 (=A) to SU_PAR10 (=J). If global values should be
used, A to J should initialized manually by the expression list.

Attention: using the expression parser is extremely time consuming. The overall model
performance will going down to below 50%. It is recommended for site modelling only (one cell or
a small number of cells) — or you have a really good computer to run a real watershed size model.

